Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mem. Inst. Oswaldo Cruz ; 109(6): 828-833, 09/09/2014. tab, graf
Article in English | LILACS | ID: lil-723996

ABSTRACT

This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.


Subject(s)
Chagas Disease/drug therapy , Drug Discovery , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/classification , Biodiversity , Clinical Trials as Topic , Chagas Disease/parasitology , Life Cycle Stages/drug effects , Neglected Diseases/drug therapy , Neglected Diseases/parasitology , Species Specificity , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
2.
Mem. Inst. Oswaldo Cruz ; 109(6): 757-760, 09/09/2014. graf
Article in English | LILACS | ID: lil-724000

ABSTRACT

Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target.


Subject(s)
Benzimidazoles/pharmacology , Cytoskeleton/drug effects , Life Cycle Stages/drug effects , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Actins/isolation & purification , Flagella/drug effects , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/ultrastructure , Tubulin/isolation & purification
3.
Biol. Res ; 47: 1-8, 2014. graf, tab
Article in English | LILACS | ID: biblio-950725

ABSTRACT

BACKGROUND: Essential oils extracted from aromatic and medicinal plants have many biological properties and are therefore an alternative to the use of synthetic products. The chemical composition of essential oils from two medicinal plants (Eucalyptus globulus and E. lehmannii) was determined and, their insecticidal effects on the third and fourth larval stages of Orgyia trigotephras were assessed. RESULTS: Larvae were collected from Jebel Abderrahmane (North-East of Tunisia), conserved in groups of 50/box (21 × 10 × 10 cm) at a temperature of 25°C. Larvae were tested for larvicidal activities of essential oils. Each oil was diluted in ethanol (96%) to prepare 3 test solutions (S1 = 0.05%, S2 = 0.10% and S3 = 0.50%). Essential oils were used for contact, ingestion and Olfactory actions and compared to reference products (Bacillus thuringiensis and Decis). Olfactory action of essential oils shows that larvae mortality is higher than contact action, lower than ingestion action. MTM and FTM of S3 of E. lehmannii were respectively 1 h 32 min and 1 h 39 min are higher than those of E. globulus (MTM = 51 min and FTM = 1 h 22 min 34 sec). Contact action of E. lehmannii oil shows low insecticidal activity compared to E. globulus. MTM are respectively (1 min 52 sec and 1 min 7 sec), FTM are (2 min 38 sec, 1 min 39 sec), are the shortest recorded for S3, on the third stage of larvae. The fourth stage of larvae, MTM are (2 min 20 sec and 2 min 9 sec), FTM are (3 min 25 sec, 3 min 19 sec). Ingestion action of essential oils is longer than the contact action, since the time of death exceeds 60 minutes for all species. CONCLUSION: Results shows that essential oils have a toxic action on nerves leading to a disruption of vital system of insects. High toxic properties make these plant-derived compounds suitable for incorporation in integrated pest management programs.


Subject(s)
Animals , Oils, Volatile/chemistry , Eucalyptus/chemistry , Insecticides , Lepidoptera , Tunisia , Chromatography, Gas , Plant Leaves/metabolism , Plant Leaves/chemistry , Cyclohexanols/analysis , Monoterpenes/analysis , Eucalyptus/classification , Biological Control Agents , Herbivory , Eucalyptol , Bicyclic Monoterpenes , Larva/drug effects , Life Cycle Stages/drug effects
4.
Neotrop. entomol ; 39(3): 436-440, May-June 2010. tab, ilus
Article in Spanish | LILACS | ID: lil-556531

ABSTRACT

Spiromesifen is an insecticide that inhibits the synthesis of lipids and, in Mexico, its use against the Tomato-Potato Psyllid, Bactericera cockerelli (Sulc), on chili pepper (Capsicum annum), tomato (Lycopersicon sculentum) and potato (Solanum tuberosum) began in 2005; however more information is needed to understand its toxicity on this insect pest. The aim of this research was to determine the toxicity of spiromesifen against each of the biological stages of tomato-potato psyllid, its effect on fertility and viability of eggs deposited by treated females, as well as the female preference to lay eggs on treated and non treated plants. The relative toxicity at 95 percent mortality (highest LC95 value /LC95 value of the respective biological stage) of spiromesifen in egg, nymph 1, nymph 2, nymph 3, nymph 4, and nymph 5 were 517.5; 31316.2; 2950.1; 315.6; 18.2 and 1-fold, respectively. There were no differences in the toxicity of spiromesifen between adult males and females. The number of laid eggs was reduced as the spiromesifen concentration used to treat female increased and egg hatch was reduced in all tested doses. In the "no choice" test, females deposited 38.6 ± 2.01 eggs by leaf of non treated chili pepper type jalapeño, while in the treated with 360 mg L-1 we observed 0.3 ± 0.08 eggs by leaf. In the "choice" test, the oviposition decreased as the dose increased. There were no eggs on plants treated with 2400 mg L-1 of spiromesifen.


Subject(s)
Animals , Female , Male , Hemiptera/drug effects , Hemiptera/growth & development , Life Cycle Stages/drug effects , Spiro Compounds/toxicity
5.
Rev. Inst. Med. Trop. Säo Paulo ; 50(3): 169-175, May-June 2008. ilus, graf
Article in English | LILACS | ID: lil-485624

ABSTRACT

In order to determine the role of lysozyme, an antimicrobial peptide belonging to the innate immune system, against the dimorphic fungus Paracoccidioides brasiliensis, co-cultures of the MH-S murine alveolar macrophages cell line with P. brasiliensis conidia were done; assays to evaluate the effect of physiological and inflammatory concentrations of lysozyme directly on the fungus life cycle were also undertaken. We observed that TNF-α-activated macrophages significantly inhibited the conidia to yeast transition (p = 0.0043) and exerted an important fungicidal effect (p = 0.0044), killing 27 percent more fungal propagules in comparison with controls. Nonetheless, after adding a selective inhibitor of lysozyme, the fungicidal effect was reverted. When P. brasiliensis propagules were exposed directly to different concentrations of lysozyme, a dual effect was observed. Physiologic concentrations of the enzyme facilitated the conidia-to-yeast transition process (p < 0.05). On the contrary, inflammatory concentrations impaired the normal temperature-dependant fungal transition (p < 0.0001). When yeast cells were exposed to lysozyme, irrespective of concentration, the multiple-budding ability was badly impaired (p < 0.0001). In addition, ultra-structural changes such as subcellular degradation, fusion of lipid vacuoles, lamellar structures and interruption of the fibrilar layer were observed in lysozyme exposed conidia. These results suggest that lysozyme appears to exert a dual role as part of the anti-P. brasiliensis defense mechanisms.


Com a finalidade de determinar o papel da lisozima, um peptídeo antimicrobiano que pertence ao sistema imune inato, contra o fungo dimórfico Paracoccidioides brasiliensis, foram feitas co-culturas de uma linha de macrófagos alveolares murinos (MH-S) com as conídias do fungo na presença ou não do TNF-α e/ou um inibidor da lisozima; também foram feitos ensaios que avaliaram o efeito das concentrações fisiológicas e inflamatórias de lisozima diretamente sobre o ciclo de vida do fungo. Observamos que os macrófagos ativados com a citoquina tiveram um efeito significativo na inibição da transição conídia/levedura (p = 0,0043) e exerceram um efeito fungicida importante (p = 0,0044), matando mais de 27 por cento das propágulas do fungo em comparação com os macrófagos não ativados. No entanto, após ser o inibidor seletivo da lisozima adicionado, o efeito fungicida foi revertido. Quando os propágulos do fungo foram expostos diretamente a diferentes concentrações da lisozima, um duplo efeito foi observado. Assim, as concentrações fisiológicas da enzima facilitaram o processo de transição conídia-levedura (p < 0,05). Contrariamente, as concentrações inflamatórias prejudicaram a transição fúngica (p < 0,0001). Quando as leveduras foram expostas a qualquer concentração de lisozima, sua capacidade de multi-brotação foi gravemente prejudicada (p < 0,0001). Além disso, mudanças ultra-estruturais, como a sub degradação, a fusão dos vacúolos dos lípidos, estruturas lamelares e interrupção da camada fibrilar foram observadas em conídios expostos à lisozima. Estes resultados sugerem que a lisozima poderia exercer um duplo papel no mecanismo antifúngico contra P. brasiliensis.


Subject(s)
Animals , Humans , Mice , Antifungal Agents/pharmacology , Interferon-alpha/pharmacology , Macrophage Activation/drug effects , Macrophages, Alveolar/microbiology , Muramidase/pharmacology , Paracoccidioides/drug effects , Coculture Techniques/methods , Enzyme Inhibitors/pharmacology , Life Cycle Stages/drug effects , Mice, Inbred BALB C , Macrophage Activation/immunology , Macrophages, Alveolar/drug effects , Paracoccidioides/growth & development , Paracoccidioides/ultrastructure , Time Factors
7.
Southeast Asian J Trop Med Public Health ; 1999 Dec; 30(4): 636-42
Article in English | IMSEAR | ID: sea-31967

ABSTRACT

The two developmental stages of human malarial parasite Plasmodium falciparum, asexual and sexual blood stages, were continuously cultivated in vitro. Both asexual and sexual stages of the parasites were assayed for mitochondrial oxygen consumption by using a polarographic assay. The rate of oxygen consumption by both stages was found to be relatively low, and was not much different. Furthermore, the mitochondrial oxygen consumption by both stages was inhibited to various degrees by mammalian mitochondrial inhibitors that targeted each component of complexes I- IV of the respiratory system. The oxygen consumption by both stages was also affected by 5-fluoroorotate, a known inhibitor of enzyme dihydroorotate dehydrogenase of the pyrimidine pathway and by an antimalarial drug atovaquone that acted specifically on mitochondrial complex III of the parasite. Moreover, antimalarials primaquine and artemisinin had inhibitory effects on the oxygen consumption by both stages of the parasites. Our results suggest that P. falciparum in both developmental stages have functional mitochondria that operate a classical electron transport system, containing complexes I-IV, and linked to the pyrimidine biosynthetic pathway.


Subject(s)
Animals , Dose-Response Relationship, Drug , Electron Transport/drug effects , Enzyme Inhibitors/pharmacology , Humans , Life Cycle Stages/drug effects , Mitochondria/chemistry , Oxygen Consumption/drug effects , Plasmodium falciparum/growth & development , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL